Цифровые системы автоматического регулирования

Поскольку выходной сигнал АЦП представляет собой последовательность импульсов с амплитудами y(kT), то его можно описать выражением:

,

где предполагается, что сигнал y(t) существует для t > 0.

Преобразовав это выражение по Лапласу, получим:

.

Рис. 9. Одноконтурная цифровая система управления

Если ввести переменную , можно определить новое преобразование, называемое z - преобразованием:

.

Для простых случаев изображение Y(z) легко найти по определению. Пусть

y[k]=δ[k] = 1 - единичный дискретный импульс, тогда

.

Далее в качестве примера рассмотрим дискретный единичный ступенчатый сигнал (рис. 10):

Рис. 10. Единичная ступенчатая функция.

При , соответствующий ряд сходится и представляет собой сумму бесконечно убывающей геометрической прогрессии, которая вычисляется в замкнутом виде:

.

В теории дискретных систем используются также операторы обратного и прямого сдвига на один такт.

Оператор обратного сдвига (z-1) позволяет получить предыдущий элемент последовательности {e[k]}:

z-1e[k] = e[k-1], или .

Этот оператор соответствует запаздыванию на один такт и является физически реализуемым в том смысле, что его применение не дает будущих значений сигнала. Для того, чтобы найти остальные предшествующие элементы последовательности, надо применить оператор обратного сдвига несколько раз:

z-me[k] = e[k-m].

Если найти z - преобразование для входного Y(z) и выходного U(z) сигналов системы, то можно найти передаточную функцию системы в z - области:

.

Реализация цифровых регуляторов

Рассмотрим непрерывный ПИД-регулятор с передаточной функцией:

.

Цифровую реализацию этого регулятора можно получить, если использовать дискретную аппроксимацию операций дифференцирования и интегрирования.

Для производной по времени используется правило обратной разности:

.

Применив к этому выражению z - преобразование, получим:

.

Операцию интегрирования можно аппроксимировать с помощью формулы прямоугольников:

,

где u(kT) - выходной сигнал интегрирующего звена в момент времени

t= kT.

Применив к этому выражению z - преобразование, получим:

,

откуда передаточная функция интегрирующего звена:

.

Таким образом, передаточная функция цифрового ПИД-регулятора имеет вид:

.

Или для регулятора со взаимозависимыми настройками:

.

Поскольку в большинстве случаев объект является устройством непрерывного типа, то для того, чтобы смоделировать переходные процессы в исследуемой системе необходимо либо объект представить в цифровой форме, либо получить эквивалентную передаточную функцию регулятора, отвечающую цифровой реализации его алгоритма. Для этого проводится замена и добавляется передаточная функция демодулятора.

Перейти на страницу: 1 2

Другие стьтьи в тему

Разработка и обеспечение надежности систем автоматического управления
К современной радиоэлектронной аппаратуре предъявляются многогранные технические требования. Поэтому для реализации сложных систем автоматического управления (САУ) необходимо применять десятки и сотни тысяч различных элементов. Сложность аппаратуры отрицательно сказывается на её надёж ...

Расчет дискретной системы связи, предназначенной для передачи непрерывных сообщений
преобразователь демодулятор кодер информация Рассчитать основные характеристики системы передачи информации, структурная схема которой дана на рисунке 1. Рисунок 1 - Структурная схема системы передачи, где: ИС - источник непрерывного сообщения ; АЦП - аналого - цифровой пр ...

Разделы

Радиоэлектроника и телекоммуникации © 2020 : www.techelements.ru